Nitrogen-doped magnetic porous carbon nanospheres derived from dual templates-induced mesoporous polydopamine coated Fe3O4 for efficient extraction and sensitive determination of volatile nitrosamines by gas chromatography-mass spectroscopy

Talanta. 2024 May 10:276:126235. doi: 10.1016/j.talanta.2024.126235. Online ahead of print.

Abstract

N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.

Keywords: Carbon material; Gas chromatography-mass spectrometry (GC-MS); Magnetic solid-phase extraction; N-Nitrosamines.