Role of ammonia and glutamine in the pathogenesis and progression of metabolic dysfunction-associated steatotic liver disease: A systematic review

J Gastroenterol Hepatol. 2024 May 19. doi: 10.1111/jgh.16603. Online ahead of print.

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population, with a significant risk of advancing to liver cirrhosis and hepatocellular carcinoma. The roles of ammonia and glutamine in MASLD's pathogenesis are increasingly recognized, prompting this systematic review. This systematic review was conducted through a meticulous search of literature on December 21, 2023, across five major databases, focusing on studies that addressed the relationship between ammonia or glutamine and MASLD. The quality of the included studies was evaluated using CASP checklists. This study is officially registered in the PROSPERO database (CRD42023495619) and was conducted without external funding or sponsorship. Following PRISMA guidelines, 13 studies were included in this review. The studies were conducted globally, with varying sample sizes and study designs. The appraisal indicated a mainly low bias, confirming the reliability of the evidence. Glutamine's involvement in MASLD emerged as multifaceted, with its metabolic role being critical for liver function and disease progression. Variable expressions of glutamine synthetase and glutaminase enzymes highlight metabolic complexity whereas ammonia's impact through urea cycle dysfunction suggests avenues for therapeutic intervention. However, human clinical trials are lacking. This review emphasizes the necessity of glutamine and ammonia in understanding MASLD and identifies potential therapeutic targets. The current evidence, while robust, points to the need for human studies to corroborate preclinical findings. A personalized approach to treatment, informed by metabolic differences in MASLD patients, is advocated, alongside future large-scale clinical trials for a deeper exploration into these metabolic pathways.

Keywords: Ammonia metabolism; Glutamine pathophysiology; Liver disease progression; Metabolic dysfunction‐associated steatohepatitis (MASLD); Systematic review.

Publication types

  • Review