In vitro gastric digestion of polysaccharides in mixed dispersions: Evaluating the contribution of human salivary α-amylase on starch molecular breakdown

Curr Res Food Sci. 2024 May 4:8:100759. doi: 10.1016/j.crfs.2024.100759. eCollection 2024.

Abstract

The aim of this work was to investigate the impact of the addition of salivary α-amylase on starch hydrolysis in protein-containing dispersions during an in vitro digestion process. In vitro digestion provides useful insights on the fate of nutrients during gastro-intestinal transit in complex food matrices, an important aspect to consider when developing highly nutritious foods. Many foods contain polysaccharides, and as their disruption in the gastric stage is limited, salivary α-amylase is often neglected in in vitro studies. A reference study on the effect of salivary α-amylase using one of the most advanced and complex in vitro digestion models (INFOGEST) is, however, not available. Hence, this work reports the gastrointestinal breakdown of three mixed dispersions containing whey protein isolate with different polysaccharides: potato starch, pectin from citrus peel and maize starch. The latter was also studied after heating. No polysaccharide or salivary α-amylase-dependent effect on protein digestion was found, based on the free NH2 and SDS-PAGE. However, in the heat-treated samples, the addition of salivary α-amylase showed a significantly higher starch hydrolysis compared to the sample without α-amylase, due to the gelatinization of the starch granules, which improved the accessibility of the starch molecules to the enzyme. This work demonstrated that the presence of different types of polysaccharides does not affect protein digestion, but also it emphasizes the importance of considering the influence of processing on food structure and its digestibility, even in the simplest model systems.

Keywords: Citrus peel pectin; In vitro digestion; Potato starch; Protein hydrolysis; Starch hydrolysis; Structure; Waxy maize starch.