Microbial communities in petroleum refinery effluents and their complex functions

Saudi J Biol Sci. 2024 Jul;31(7):104008. doi: 10.1016/j.sjbs.2024.104008. Epub 2024 May 6.

Abstract

Petroleum refinery effluents (PRE) are a significant cause of pollution. It contains toxic compounds such as total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs), as well as heavy metals. They show a huge threat facing the aquaculture habitats, human health, and the environment if they are not treated before discharging into the environment. Physical and chemical procedures are used to treat hydrocarbon pollution in PRE, but these techniques often result in the formation of hazardous by-products during the remediation process. However, PRE contains various microbial communities, including bacteria, yeast, microalgae, and fungi. The bioremediation and biodegradation of oil contaminants are the primary functions of these microbial communities. However, these microorganisms can perform various additional functions including but not limited to heavy metals removal, production of biosurfactants, and nitrogen fixation. This review contributes to the comprehension of natural microbial communities and their complex functions in petroleum refinery effluents. Understanding microbial communities would facilitate the advancement of innovative biotechnology aimed at treating PRE, improving bioremediation processes, and potentially transforming PRE into valuable bio-products. Moreover, it assists in determining the most effective bioaugmentation strategy to enhance biodegradation and bioremediation in PRE. The review highlights the potential for sustainable green approaches using microbial communities to replace toxic chemical therapies and expensive physical treatments in the future.

Keywords: Algae; Bacteria; Biodegradation; Bioremediation; Crude oil; Effluents; Fungi; Heavy metals; Hydrocarbons; Petroleum; Refinery.

Publication types

  • Review