Effect of a Partial Superficial and Deep Medial Collateral Ligament Injury on Knee Joint Laxity

Am J Sports Med. 2024 May 20:3635465241251454. doi: 10.1177/03635465241251454. Online ahead of print.

Abstract

Background: Injuries to the medial collateral ligament (MCL), specifically the deep MCL (dMCL) and superficial MCL (sMCL), are both reported to be factors in anteromedial rotatory instability (AMRI); however, a partial sMCL (psMCL) injury is often present, the effect of which on AMRI is unknown.

Purpose: To investigate the effect of a dMCL injury with or without a psMCL injury on knee joint laxity.

Study design: Controlled laboratory study.

Methods: Sixteen fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic simulator. The anterior cruciate ligament (ACL) was cut first and last in protocols 1 and 2, respectively. The dMCL was cut completely, followed by an intermediary psMCL injury state before the sMCL was completely sectioned. Tibiofemoral kinematics were measured at 0°, 30°, 60°, and 90° of knee flexion for the following measurements: 8 N·m of valgus rotation (VR), 4 N·m of external tibial rotation, 4 N·m of internal tibial rotation, and combined 89 N of anterior tibial translation and 4 N·m of external tibial rotation for both anteromedial rotation (AMR) and anteromedial translation. The differences between subsequent states, as well as differences with respect to the intact state, were analyzed.

Results: In an ACL-intact or -deficient joint, a combined dMCL and psMCL injury increased external tibial rotation and VR compared with the intact state at all angles. A significant increase in AMR was seen in the ACL-intact knee after this combined injury. Cutting the dMCL alone showed lower mean increases in AMR compared with the psMCL injury, which were significant only when the ACL was intact in knee flexion. Moreover, cutting the dMCL had no effect on VR. The ACL was the most important structure in controlling anteromedial translation, followed by the psMCL or dMCL depending on the knee flexion angle.

Conclusion: A dMCL injury alone may produce a small increase in AMRI but not in VR. A combined dMCL and psMCL injury caused an increase in AMRI and VR.

Clinical relevance: In clinical practice, if an increase in AMRI at 30° and 90° of knee flexion is seen together with some increase in VR, a combined dMCL and psMCL injury should be suspected.

Keywords: ACL reconstruction failure; anterior cruciate ligament; anteromedial rotatory instability; biomechanics; instability; medial collateral ligament.