Excellent Adsorption of Lead (II) and Chromium (VI) from Water Using Zwitterions (-NH3+ and -COO-) Functionalized Nano Lanthanum Oxide: Kinetic, Isotherm, Thermodynamic, and Surface Mechanism

Langmuir. 2024 May 21. doi: 10.1021/acs.langmuir.4c00690. Online ahead of print.

Abstract

Zwitterion amino acid l-cysteine functionalized lanthanum oxide nanoparticles (l-Cyst-La2O3 NPs) have been synthesized for the first time with lanthanum acetate as the precursor, NH4OH as the base, and l-cysteine as the in situ functionalized mediator. The typical size of l-Cyst-La2O3 NPs was obtained in the range of 15-20 nm from the TEM technique. A cytotoxicity test of l-Cyst-La2O3 NPs was performed in Raw 264.7 cell lines, which were shown to be highly biocompatible. The point zero charge pH (pHPZC) of bare and l-Cyst functionalized La2O3 NPs was obtained at pH 6 and 2. The maximum uptake capacities of l-Cyst-La2O3 NPs at temperatures 25-45 °C were obtained as 137-282 mg/g for Pb2+ and 186-256 mg/g for Cr6+. All of these values are much higher than those reported in the literature with other nanomaterials. The presence of -SH, -NH2, and -COOH functional groups in zwitterion l-cysteine provides multiple binding sites leading to the high adsorption of Pb2+ and Cr6+. Five-cycle desorption studies were successfully performed to regenerate the spent l-Cyst-La2O3 NPs.