Self-organization of modular activity in immature cortical networks

Nat Commun. 2024 May 21;15(1):4145. doi: 10.1038/s41467-024-48341-x.

Abstract

During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.

MeSH terms

  • Animals
  • Calcium / metabolism
  • Cerebral Cortex / physiology
  • Ferrets*
  • Male
  • Nerve Net* / physiology
  • Neurons / physiology
  • Optogenetics*
  • Photic Stimulation
  • Visual Cortex / growth & development
  • Visual Cortex / physiology