Antitumour effects of artesunate via cell cycle checkpoint controls in human oesophageal squamous carcinoma cells

Eur J Med Res. 2024 May 22;29(1):293. doi: 10.1186/s40001-024-01882-9.

Abstract

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.

Keywords: Artesunate; DNA damage and cell cycle checkpoint controls; Oesophageal squamous cell carcinoma; Reactive oxygen species.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Apoptosis* / drug effects
  • Artemisinins / pharmacology
  • Artemisinins / therapeutic use
  • Artesunate* / pharmacology
  • Artesunate* / therapeutic use
  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology
  • Cell Cycle Checkpoints* / drug effects
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • DNA Damage / drug effects
  • Esophageal Neoplasms* / drug therapy
  • Esophageal Neoplasms* / genetics
  • Esophageal Neoplasms* / metabolism
  • Esophageal Neoplasms* / pathology
  • Esophageal Squamous Cell Carcinoma* / drug therapy
  • Esophageal Squamous Cell Carcinoma* / genetics
  • Esophageal Squamous Cell Carcinoma* / metabolism
  • Esophageal Squamous Cell Carcinoma* / pathology
  • Humans
  • Mice
  • Mice, Nude
  • Reactive Oxygen Species / metabolism
  • Xenograft Model Antitumor Assays