Robust Amide-Linked Fluorinated Covalent Organic Framework for Long-Term Oxygen Reduction Reaction Electrocatalysis

Small. 2024 May 21:e2402082. doi: 10.1002/smll.202402082. Online ahead of print.

Abstract

The high energy demand of the evolving world opens the door to develop more sustainable and environmentally friendly energy sources. Oxygen reduction reaction (ORR) is a promising candidate, being the 2e- pathway of great interest for the green production of hydrogen peroxide. Metal-free covalent organic frameworks (COFs) electrocatalysts present a suitable alternative to substitute the noble-metals more commonly employed in this application. However, the lability of the linkages building up the framework raises an issue for their long-term use and application in aggressive media. Herein, a stable amide-linked COF is reported through post-synthetic modification of a previously reported imine-linked COF proven to be effective as an electrocatalyst, enhancing its chemical stability and electrochemical response. It is found that after the linkage transformation, the new electrocatalyst displays a higher selectivity toward the H2O2 production (98.5%) and an enhanced turnover frequency of 0.155 s-1, which is among the bests reported to date for metal-free and COF based electrocatalysts. The results represent a promising step forward for metal-free non pyrolyzed electrocatalysts, improving their properties through post-synthetic linkage modification for long-term operation.

Keywords: COF; ORR; amide; electrocatalyst; fluorine, H2O2; post‐synthesisD.