Ultra-thin FeCoNi-LDH hollow nanoflower as solid-phase microextraction coating for targeted capture of six pesticides by electrostatic adsorption

Talanta. 2024 Aug 15:276:126258. doi: 10.1016/j.talanta.2024.126258. Epub 2024 May 13.

Abstract

Pesticides are common pollutants that cause detriment to the ecological environmental safety and health of human due to their toxicity, volatility and bioaccumulation. In this work, an ultra-thin polymetallic layered double hydroxide (FeCoNi-LDH) with hollow nanoflower structure composite was synthesized using ZIF-67 as a self-sacrificial template, which was used as solid-phase microextraction (SPME) coating for the targeted capture pesticides, which could be combined with high-performance liquid chromatography (HPLC) to sensitive inspection pesticides in real water samples. Orthogonal experimental design (OAD) was applied to ensure the best SPME condition. Additionally, the adsorption properties were evaluated by chemical thermodynamics and kinetics. Under the optimized conditions, high adsorption capacity was obtained (117.0-21.5 mg g-1). A wide linear range (0.020-1000.0 μg L-1), low detection limit (0.008-0.172 μg L-1) and excellent reproducibility were obtained under the established method. This research provided a new strategy for designing hollow materials with multiple cations for the adsorption of anion or organic pollutants.

Keywords: Electrostatic adsorption; Layered double hydroxide; Pesticide; Solid-phase microextraction.