The β-arrestin1/endothelin axis bolsters ovarian fibroblast-dependent invadosome activity and cancer cell metastatic potential

Cell Death Dis. 2024 May 22;15(5):358. doi: 10.1038/s41419-024-06730-6.

Abstract

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of β-arrestin1 (β-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/β-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin β1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or β-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/β-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.

MeSH terms

  • Animals
  • Cancer-Associated Fibroblasts* / metabolism
  • Cancer-Associated Fibroblasts* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Endothelin-1 / metabolism
  • Extracellular Matrix / metabolism
  • Female
  • Fibroblasts / metabolism
  • Humans
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / metabolism
  • Ovarian Neoplasms* / pathology
  • Podosomes* / metabolism
  • Receptor, Endothelin A / metabolism
  • Signal Transduction
  • beta-Arrestin 1* / genetics
  • beta-Arrestin 1* / metabolism

Substances

  • beta-Arrestin 1
  • Endothelin-1
  • Receptor, Endothelin A
  • ARRB1 protein, human