Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy

Antibiotics (Basel). 2024 May 3;13(5):419. doi: 10.3390/antibiotics13050419.

Abstract

This study aimed to characterize the impact of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics (PK) of meropenem in neonates and children and to provide recommendations for meropenem dosing in this specific population of patients. Therapeutic drug monitoring (152 meropenem plasma concentrations) data from 45 patients (38 received ECMO) with a body weight (BW) of 7.88 (3.62-11.97) kg (median (interquartile range)) and postnatal age of 3 (0-465) days were collected. The population PK analysis was performed using NONMEM V7.3.0. Monte Carlo simulations were performed to assess the probability of target achievement (PTA) for 40% of time the free drug remained above the minimum inhibitory concentration (fT > MIC) and 100% fT > MIC. BW was found to be a significant covariate for the volume of distribution (Vd) and clearance (CL). Additionally, continuous renal replacement therapy (CRRT) was associated with a two-fold increase in Vd. In the final model, the CL and Vd for a typical patient with a median BW of 7.88 kg that was off CRRT were 1.09 L/h (RSE = 8%) and 3.98 L (14%), respectively. ECMO did not affect meropenem PK, while superimposed CRRT significantly increased Vd. We concluded that current dosing regimens provide acceptably high PTA for MIC ≤ 4 mg/L for 40% fT > MIC, but individual dose adjustments are needed for 100% fT > MIC.

Keywords: Monte Carlo simulations; children; continuous renal replacement therapy; extracorporeal membrane oxygenation; meropenem; neonates.