Fluorescence tracking demonstrates T cell recirculation is transiently impaired by radiation therapy to the tumor

Sci Rep. 2024 May 24;14(1):11909. doi: 10.1038/s41598-024-62871-w.

Abstract

T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes* / immunology
  • CD8-Positive T-Lymphocytes* / metabolism
  • Cell Line, Tumor
  • Cell Tracking / methods
  • Fluorescence
  • Lymph Nodes / immunology
  • Lymph Nodes / pathology
  • Lymph Nodes / radiation effects
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Lymphocytes, Tumor-Infiltrating / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Neoplasms / immunology
  • Neoplasms / pathology
  • Neoplasms / radiotherapy