On the Durability Performance of Two Adhesives to Be Used in Bonded Secondary Structures for Offshore Wind Installations

Materials (Basel). 2024 May 16;17(10):2392. doi: 10.3390/ma17102392.

Abstract

The development of offshore wind farms requires robust bonding solutions that can withstand harsh marine conditions for the easy integration of secondary structures. This paper investigates the durability performance of two adhesives: Sikadur 30 epoxy resin and Loctite UK 1351 B25 urethane-based adhesive for use in offshore wind environments. Tensile tests on adhesive samples and accelerated aging tests were carried out under a variety of temperatures and environmental conditions, including both dry and wet conditions. The long-term effects of aging on adhesive integrity are investigated by simulating the operational life of offshore installations. The evolution of mechanical properties, studied under accelerated aging conditions, provides an important indication of the longevity of structures under normal conditions. The results show significant differences in performance between the two adhesives, highlighting their suitability for specific operating parameters. It should also be noted that for both adhesives, their exposure to different environments (seawater, distilled water, humid climate) over a prolonged period showed that (i) Loctite adhesive has a slightly faster initial uptake than Sikadur adhesive, but the latter reaches an asymptotic plateau with a lower maximum absorption rate than Loctite adhesive; and (ii) a progressive deterioration in the tensile properties occurred following an exponential function. Therefore, aging behavior results showed a clear correlation with the Arrhenius law, providing a predictive tool for the aging process and the aging process of the two adhesives followed Arrhenius kinetics. Ultimately, the knowledge gained from this study is intended to inform best practice in the use of adhesives, thereby improving the reliability and sustainability of the offshore renewable energy infrastructure.

Keywords: adhesives; durability; hygrothermal aging; mechanical properties; thermal aging.

Grants and funding

This research received no external funding.