On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells

Sensors (Basel). 2024 May 17;24(10):3186. doi: 10.3390/s24103186.

Abstract

Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.

Keywords: cell orientation; electrical impedance spectroscopy; malaria-infected cell; microfluidic device; red blood cell.

MeSH terms

  • Dielectric Spectroscopy* / instrumentation
  • Dielectric Spectroscopy* / methods
  • Electric Impedance
  • Electrodes
  • Erythrocytes* / parasitology
  • Humans
  • Lab-On-A-Chip Devices
  • Malaria / diagnosis
  • Malaria / parasitology
  • Malaria, Falciparum / diagnosis
  • Malaria, Falciparum / parasitology
  • Plasmodium falciparum* / pathogenicity
  • Plasmodium falciparum* / physiology