Natural Phytochemical and Visible Light at Different Wavelengths Show Synergistic Antibacterial Activity against Staphylococcus aureus

Pharmaceutics. 2024 May 1;16(5):612. doi: 10.3390/pharmaceutics16050612.

Abstract

As the risk of antibiotic-resistant bacteria increases, interest in non-antibiotic treatment is also increasing. Among the methods used in non-antibiotic therapy, natural antibiotics such as essential oils have disadvantages such as low efficiency. In the case of phototherapy, the light used for antibacterial activities has low penetration into the human body because of its short wavelength, making it of low medical utility. To solve this problem, this study aimed to determine conditions for enhancing the antibacterial activity of natural phytochemicals and visible light. Four natural phytochemical extracts that showed high antibacterial properties in previous studies were analyzed. Synergistic effects on antibacterial activity and cytotoxicity were determined when natural phytochemical extracts and visible light were simultaneously used. As a result, it was confirmed that the antibacterial activity increased by four times when Sanguisorba officinalis L. was irradiated with 465 nm for 10 min and 520 nm for 40 min, and Uncaria gambir Roxb. was irradiated with 465 nm for 10 min and 520 nm for 60 min compared to when Sanguisorba officinalis L. and Uncaria gambir Roxb. were used alone. The synergistic effect on antibacterial activity was independent of the absorption peak of the natural phytochemical extracts. In addition, in the case of natural phytochemical extracts with improved antibacterial activity, it was confirmed that the improvement of antibacterial activity was increased in inverse proportion to the light irradiation wavelength and in proportion to the light irradiation time. The antibacterial activity was enhanced regardless of antibiotic resistance. In the case of cytotoxicity, it was confirmed that there was no toxicity to A549 cells when treated with 465 nm, the shortest wavelength among the natural phytochemical extracts. These results show how to replace blue light, which has been underutilized due to its low transmittance and cytotoxicity. They also demonstrate the high medical potential of using natural phytochemical and visible light as a combination therapy.

Keywords: Staphylococcus aureus; antibacterial activity; natural phytochemical; photodynamic therapy; synergistic effect; visible light.

Grants and funding