Novel Functional Food Properties of Forest Onion (Eleutherine bulbosa Merr.) Phytochemicals for Treating Metabolic Syndrome: New Insights from a Combined Computational and In Vitro Approach

Nutrients. 2024 May 10;16(10):1441. doi: 10.3390/nu16101441.

Abstract

Metabolic syndrome is a global health problem. The use of functional foods as dietary components has been increasing. One food of interest is forest onion extract (FOE). This study aimed to investigate the effect of FOE on lipid and glucose metabolism in silico and in vitro using the 3T3-L1 mouse cell line. This was a comprehensive study that used a multi-modal computational network pharmacology analysis and molecular docking in silico and 3T3-L1 mouse cells in vitro. The phytochemical components of FOE were analyzed using untargeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Next, an in silico analysis was performed to determine FOE's bioactive compounds, and a toxicity analysis, protein target identification, network pharmacology, and molecular docking were carried out. FOE's effect on pancreatic lipase, α-glucosidase, and α-amylase inhibition was determined. Finally, we determined its effect on lipid accumulation and MAPK8, PPARG, HMGCR, CPT-1, and GLP1 expression in the preadipocyte 3T3-L1 mouse cell line. We showed that the potential metabolites targeted glucose and lipid metabolism in silico and that FOE inhibited pancreatic lipase levels, α-glucosidase, and α-amylase in vitro. Furthermore, FOE significantly (p < 0.05) inhibits targeted protein expressions of MAPK8, PPARG, HMGCR, CPT-1, and GLP-1 in vitro in 3T3-L1 mouse cells in a dose-dependent manner. FOE contains several metabolites that reduce pancreatic lipase levels, α-glucosidase, α-amylase, and targeted proteins associated with lipid and glucose metabolism in vitro.

Keywords: diabetes; forest onion; functional food; metabolic syndrome; mouse cell line; network pharmacology; obesity; phytochemicals; preadipocyte 3T3-L1.

MeSH terms

  • 3T3-L1 Cells*
  • Animals
  • Computer Simulation
  • Functional Food
  • Glucose / metabolism
  • Lipase / metabolism
  • Lipid Metabolism* / drug effects
  • Metabolic Syndrome* / drug therapy
  • Mice
  • Molecular Docking Simulation*
  • Network Pharmacology
  • Onions* / chemistry
  • PPAR gamma / metabolism
  • Phytochemicals* / pharmacology
  • Plant Extracts* / pharmacology
  • Tandem Mass Spectrometry
  • alpha-Amylases / antagonists & inhibitors
  • alpha-Amylases / metabolism
  • alpha-Glucosidases / metabolism

Substances

  • Phytochemicals
  • Plant Extracts
  • Lipase
  • alpha-Amylases
  • Glucose
  • PPAR gamma
  • alpha-Glucosidases

Grants and funding

This research is funding by Talenta Universitas Sumatera Utara.