Salvia hispanica L. (chia) seed improves redox state and reverts extracellular matrix collagen deposition in skeletal muscle of sucrose-rich diet-fed rats

Biofactors. 2024 May 28. doi: 10.1002/biof.2087. Online ahead of print.

Abstract

Skeletal muscle (SkM) is a plastic and dynamic tissue, essential in energy metabolism. Growing evidence suggests a close relationship between intramuscular fat accumulation, oxidative stress (OS), extracellular matrix (ECM) remodeling, and metabolic deregulation in SkM. Nowadays natural products emerge as promising alternatives for the treatment of metabolic disorders. We have previously shown that chia seed administration reverts SkM lipotoxicity and whole-body insulin resistant (IR) in sucrose-rich diet (SRD) fed rats. The purpose of the present study was to assess the involvement of OS and fibrosis in SkM metabolic impairment of insulin-resistant rats fed a long-term SRD and the effects of chia seed upon these mechanisms as therapeutic strategy. Results showed that insulin-resistant SRD-fed rats exhibited sarcopenia, increase in lipid peroxidation, altered redox state, and ECM remodeling-increased collagen deposition and lower activity of the metalloproteinase 2 (MMP-2) in SkM. Chia seed increased ferric ion reducing antioxidant power and glutathione reduced form levels, and the activities of glutathione peroxidase and glutathione reductase enzymes. Moreover, chia seed reversed fibrosis and restored the MMP-2 activity. This work reveals a participation of the OS and ECM remodeling in the metabolic alterations of SkM in our experimental model. Moreover, current data show novel properties of chia seed with the potential to attenuate SkM OS and fibrosis, hallmark of insulin-resistant muscle.

Keywords: chia seed; fibrosis; insulin resistant rats; lipotoxicity; oxidative stress; skeletal muscle.