Hamster spermatozoa incorporate hypotaurine via TauT for self-protection

Reproduction. 2024 Jun 1:REP-24-0022. doi: 10.1530/REP-24-0022. Online ahead of print.


To achieve fertilization competence, mammalian spermatozoa undergo capacitation, during which they actively generate reactive oxygen species (ROS). Therefore, mammalian spermatozoa must protect themselves from these self-generated ROS. The mammalian oviductal fluid is rich in hypotaurine, a taurine precursor, which reportedly protects mammalian spermatozoa, including those of hamsters, from ROS; however, its precise mechanism remains unknown. This study aimed to elucidate the mechanism underlying hypotaurine-mediated protection of spermatozoa from ROS using hamsters, particularly focusing on the taurine/hypotaurine transporter TauT. The effect of hypotaurine on sperm motility and ROS levels was tested using sperm motility analysis and the CellROX dye and luminol assays. RNA sequencing analysis was performed to verify TauT expression. We found that hypotaurine was necessary for maintaining sperm motility and hyperactivated motility. Hypotaurine did not scavenge extracellular ROS but lowered intracellular ROS levels and was incorporated and concentrated in hamster spermatozoa. TauT was detected at both mRNA and protein levels. β-Alanine blocked hypotaurine transport, increased intracellular ROS levels, and inhibited hyperactivation. Elimination of Na+ or Cl- ions inhibited hypotaurine transport and increased intracellular ROS levels. Thus, these results indicated that hamster spermatozoa incorporated and concentrated hypotaurine in sperm cells via TauT to protect themselves from self-generated ROS.