Alpha hemolysin of Escherichia coli induces a necrotic-like procoagulant state in platelets

Biochimie. 2024 Jun 8:S0300-9084(24)00137-8. doi: 10.1016/j.biochi.2024.06.001. Online ahead of print.

Abstract

Uropathogenic strains of E. coli (UPEC) is a leading cause of sepsis, deploying multiple virulence factors to evade host immune responses. Notably, alpha-hemolysin (HlyA) produced by UPEC is implicated in septic symptoms associated with bacteremia, correlating with thrombocytopenia, a critical indicator of organ dysfunction and a predictor of poorer patient prognosis. This study meticulously explores the impact of sublytic concentrations of HlyA on platelets. Findings reveal that HlyA triggers an increase in intracellular calcium, activating calpain and exposing phosphatidylserine to the cell surface, as validated by flow cytometric experiments. Electron microscopy reveals a distinctive balloon-like shape in HlyA-treated platelets, indicative of a procoagulant state. The toxin induces the release of procoagulant extracellular vesicles and the secretion of alpha and dense granules. Overall, the results point to HlyA inducing a necrotic-like procoagulant state in platelets. The effects of sublytic concentrations of HlyA on both erythrocytes and platelets could have a potential impact on capillary microcirculation. Targeting HlyA emerges as a viable therapeutic strategy to mitigate the adverse effects of UPEC infections, especially in South American countries where these infections are endemic, underscoring its significance as a potential therapeutic target.

Keywords: Microvesicles; Procoagulant state; RTX toxins; Sepsis; UPEC.