Multi-trait index: selection and recommendation of superior black bean genotypes as new improved varieties

BMC Plant Biol. 2024 Jun 10;24(1):525. doi: 10.1186/s12870-024-05248-5.


Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.

Keywords: Phaseolus vulgaris L.; Grain yield; Selection gains; Selection index; Simultaneous selection.

MeSH terms

  • Crops, Agricultural / genetics
  • Genotype*
  • Phaseolus* / genetics
  • Phenotype
  • Plant Breeding / methods
  • Selection, Genetic