Multi-Objective Optimization of an Assembly Layout Using Nature-Inspired Algorithms and a Digital Human Modeling Tool

IISE Trans Occup Ergon Hum Factors. 2024 Jun 12:1-14. doi: 10.1080/24725838.2024.2362726. Online ahead of print.


OCCUPATIONAL APPLICATIONSIn the context of Industry 5.0, our study advances manufacturing factory layout planning by integrating multi-objective optimization with nature-inspired algorithms and a digital human modeling tool. This approach aims to overcome the limitations of traditional planning methods, which often rely on engineers' expertise and inputs from various functions in a company, leading to slow processes and risk of human errors. By focusing the multi-objective optimization on three primary targets, our methodology promotes objective and efficient layout planning, simultaneously considering worker well-being and system performance efficiency. Illustrated through a pedal car assembly station layout case, we demonstrate how layout planning can transition into a transparent, cross-disciplinary, and automated activity. This methodology provides multi-objective decision support, showcasing a significant step forward in manufacturing factory layout design practices.

Keywords: Multi-objective; assembly; factory layouts; industry 5.0; optimization.

Plain language summary

Rationale: Integrating multi-objective optimization in manufacturing layout planning addresses simultaneous considerations of productivity, worker well-being, and space efficiency, moving beyond traditional, expert-reliant methods that often overlook critical design aspects. Leveraging nature-inspired algorithms and a digital human modeling tool, this study advances a holistic, automated design process in line with Industry 5.0. Purpose: This research demonstrates an innovative approach to manufacturing layout optimization that simultaneously considers worker well-being and system performance. Utilizing the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Particle Swarm Optimization (PSO) alongside a Digital Human Modeling (DHM) tool, the study proposes layouts that equally prioritize ergonomic factors, productivity, and area utilization. Methods: Through a pedal car assembly station case, the study illustrates the transition of layout planning into a transparent, cross-disciplinary, and automated process. This method offers objective decision support, balancing diverse objectives concurrently. Results: The optimization results obtained from the NSGA-II and PSO algorithms represent feasible non-dominated solutions of layout proposals, with the NSGA-II algorithm finding a solution superior in all objectives compared to the expert engineer-designed start solution for the layout. This demonstrates the presented method’s capacity to refine layout planning practices significantly. Conclusions: The study validates the effectiveness of combining multi-objective optimization with digital human modeling in manufacturing layout planning, aligning with Industry 5.0’s emphasis on human-centric processes. It proves that operational efficiency and worker well-being can be simultaneously considered and presents future potential manufacturing design advancements. This approach underscores the necessity of multi-objective consideration for optimal layout achievement, marking a progressive step in meeting modern manufacturing’s complex demands.