Efficient Magnon Injection and Detection via the Orbital Rashba-Edelstein Effect

Phys Rev Lett. 2024 May 31;132(22):226704. doi: 10.1103/PhysRevLett.132.226704.

Abstract

Orbital currents and accumulation provide a new avenue to boost spintronic effects in nanodevices. Here, we use interconversion effects between charge current and orbital angular momentum to demonstrate a dramatic increase in the magnon spin injection and detection efficiencies in nanodevices consisting of a magnetic insulator contacted by Pt/CuO_{x} electrodes. Moreover, we note distinct variations in efficiency for magnon spin injection and detection, indicating a disparity in the direct and inverse orbital Rashba-Edelstein effect efficiencies.