Assessment of longitudinal dispersion and flow resistance near floodplains through riparian woodlands

J Environ Manage. 2024 Jul:364:121298. doi: 10.1016/j.jenvman.2024.121298. Epub 2024 Jun 14.

Abstract

Riparian woodlands prevent bank erosions, recycle minerals, sustain biodiversity, act as flow resistance on floodplains, and filter pollutants. The emergent trees characterize woodlands with different spacing arrangements that dictate flow resistance and longitudinal dispersion of the pollutants in compound channel flow. The single- and multistage compound channels exist in urban and natural watercourses with riparian and transplanted trees on different stages of the floodplain. This study numerically validates the planting of vegetation in lines on single- and multistage floodplains using a wall-modeled large-eddy simulation model. Post-validation, the focus of the study was to assess the hydrodynamic behavior and mixing around the floodplain and main channel section of different tested configurations. The approximation of flow structures for the various configurations of tree plantations shows stronger vortices with significant characteristic length scales for floodplains closer to the main channel. The intensity of the secondary current is higher for denser planted trees at junctions of floodplains. For higher flow events, drag force contributions for staged floodplains with trees on both stages are 45-41%, and trees on the top stage contribute 27-22% to the total frictional force budget. The subsequent investigation shows that the in-line trees geometrical configuration and spacing arrangement on the floodplain dictates flow resistance and longitudinal dispersion of the pollutants and contamination in channel flow. The results show that the overall reduction in discharge for floodplains with tree planting is 19.8-36.2% for single-stage and 10.4-23.6% for multistage compound channels. The longitudinal dispersion coefficients for each multi-zone model predict a 61% and 41% dispersion reduction, respectively, in single- and multistage floodplains with planted trees. Floodplains with denser tree spacing have a maximum zonal discharge reduction of 45% for a single-stage and 27.2% and 28.0% for multistage channels. These findings strongly suggest that the planting parameters of spacing-to-diameter ratio and floodplain geometry play a pivotal role in floodplain management from the perspective of contaminant dispersion and flood risk reduction during high-flow events.

Keywords: Compound channels; Flood management; Flow structures; Large-eddy simulation; Pollution dispersion; Transplanted trees.

MeSH terms

  • Floods
  • Forests
  • Hydrodynamics
  • Models, Theoretical
  • Rivers
  • Trees*