Electrocortical activity associated with movement-related fear: a methodological exploration of a threat-conditioning paradigm involving destabilising perturbations during quiet standing

Exp Brain Res. 2024 Aug;242(8):1903-1915. doi: 10.1007/s00221-024-06873-0. Epub 2024 Jun 19.

Abstract

Musculoskeletal trauma often leads to lasting psychological impacts stemming from concerns of future injuries. Often referred to as kinesiophobia or re-injury anxiety, such concerns have been shown to hinder return to physical activity and are believed to increase the risk for secondary injuries. Screening for re-injury anxiety is currently restricted to subjective questionnaires, which are prone to self-report bias. We introduce a novel approach to objectively identify electrocortical activity associated with the threat of destabilising perturbations. We aimed to explore its feasibility among non-injured persons, with potential future implementation for screening of re-injury anxiety. Twenty-three participants stood blindfolded on a translational balance perturbation platform. Consecutive auditory stimuli were provided as low (neutral stimulus [CS-]) or high (conditioned stimulus [CS+]) tones. For the main experimental protocol (Protocol I), half of the high tones were followed by a perturbation in one of eight unpredictable directions. A separate validation protocol (Protocol II) requiring voluntary squatting without perturbations was performed with 12 participants. Event-related potentials (ERP) were computed from electroencephalography recordings and significant time-domain components were detected using an interval-wise testing procedure. High-amplitude early contingent negative variation (CNV) waves were significantly greater for CS+ compared with CS- trials in all channels for Protocol I (> 521-800ms), most prominently over frontal and central midline locations (P ≤ 0.001). For Protocol II, shorter frontal ERP components were observed (541-609ms). Our test paradigm revealed electrocortical activation possibly associated with movement-related fear. Exploring the discriminative validity of the paradigm among individuals with and without self-reported re-injury anxiety is warranted.

Keywords: CNV; EEG; ERP; Kinesiophobia; Moving platform; Re-injury anxiety.

MeSH terms

  • Acoustic Stimulation / methods
  • Adult
  • Electroencephalography* / methods
  • Evoked Potentials / physiology
  • Fear* / physiology
  • Female
  • Humans
  • Male
  • Movement* / physiology
  • Postural Balance / physiology
  • Standing Position
  • Young Adult