As waste discharge into numerous river systems escalates, the pollution of water bodies typically rises. Given the limited capacity of rivers to withstand pollution and their constrained self-cleaning capabilities, treated pollutants from waste discharge must be released into the river. Despite numerous models and algorithms proposed for managing river water quality to meet standards, literature, to our awareness, lacks the utilization of a comprehensive multi-criteria group decision-making approach for water quality management, particularly in river systems. Therefore, this research introduces a new, comprehensive multi-criteria group decision-making for the management of water quality in the Haraz River basin, located in Iran. To do so, the water quality of the basin, a one-dimensional water quality model, QUAL2Kw, was employed to simulate and calibrate the water quality along the river. The simulation results revealed that the downstream water quality violates the water quality standards. To mitigate this issue, various scenarios for waste load allocation (WLA) were evaluated, including no wastewater treatment, primary wastewater treatment, advanced secondary wastewater treatment utilizing the activated sludge (AS) method, and advanced wastewater treatment via the membrane bioreactor (MBR) method. Utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Fuzzy TOPSIS group decision-making model, it was determined that the optimal solution was the implementation of secondary wastewater treatment utilizing the activated sludge method for the 11 PS of pollution, while still adhering to Iranian water quality standard. In addition, the findings of the present study indicate that the implementation of primary wastewater treatment, advanced secondary wastewater treatment utilizing AS, and advanced wastewater treatment through MBR within the study area led to a significant enhancement in water quality. This enhancement ranged from 35 to 105% across various scenarios when compared to conditions where no actions were taken to the treatment of water.
Keywords: Haraz River; Multi-criteria group decision-making; QUAL2Kw; Waste load allocation (WLA); Water quality simulation.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.