Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning

PLoS Comput Biol. 2024 Jul 2;20(7):e1011570. doi: 10.1371/journal.pcbi.1011570. eCollection 2024 Jul.

Abstract

The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are important features discriminating different lymphoma subsets, we asked whether BCR repertoire next-generation sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning algorithms could have diagnostic utility in the subclassification of these cancers. We trained a random forest and a linear classifier via logistic regression based on patterns of clonal distribution, VDJ gene usage and physico-chemical properties of the top-n most frequently represented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples-nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)-alongside with 291 control samples. With regard to DLBCL and CLL, the models demonstrated optimal performance when utilizing only the most prevalent clonotype for classification, while in NLPBL-that has a dominant background of non-malignant bystander cells-a broader array of clonotypes enhanced model accuracy. Surprisingly, the straightforward logistic regression model performed best in this seemingly complex classification problem, suggesting linear separability in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including 125 samples from all three lymphoma entities and 58 samples from healthy individuals. Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by a trained machine learning model.

MeSH terms

  • Algorithms
  • B-Lymphocytes / immunology
  • B-Lymphocytes / metabolism
  • Computational Biology / methods
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell / genetics
  • Leukemia, Lymphocytic, Chronic, B-Cell / immunology
  • Lymphoma, B-Cell / genetics
  • Lymphoma, Large B-Cell, Diffuse / classification
  • Lymphoma, Large B-Cell, Diffuse / genetics
  • Lymphoma, Large B-Cell, Diffuse / pathology
  • Machine Learning*
  • Receptors, Antigen, B-Cell* / genetics

Substances

  • Receptors, Antigen, B-Cell