Background: Tuberculosis (TB) is among the largest infectious causes of death worldwide, and there is a need for a time- and resource-effective diagnostic methods. In this novel and exploratory study, we show the potential of using buccal swabs to collect human DNA and investigate the DNA methylation (DNAm) signatures as a diagnostic tool for TB.
Methods: Buccal swabs were collected from patients with pulmonary TB (n = 7), TB-exposed persons (n = 7), and controls (n = 9) in Sweden. Using Illumina MethylationEPIC array, the DNAm status was determined.
Results: We identified 5644 significant differentially methylated CpG sites between the patients and controls. Performing the analysis on a validation cohort of samples collected in Kenya and Peru (patients, n = 26; exposed, n = 9; control, n = 10) confirmed the DNAm signature. We identified a TB consensus disease module, significantly enriched in TB-associated genes. Last, we used machine learning to identify a panel of 7 CpG sites discriminative for TB and developed a TB classifier. In the validation cohort, the classifier performed with an area under the curve of 0.94, sensitivity of 0.92, and specificity of 1.
Conclusions: In summary, the result from this study shows clinical implications of using DNAm signatures from buccal swabs to explore new diagnostic strategies for TB.
Keywords: DNA methylation; biosignature; buccal swabs; classifier; tuberculosis.
© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America.