Members of the T-cell immunoglobulin and mucin (TIM) family, which is crucial for T-cell function, are implicated in autoimmunity. TIM-1 and -3 play distinct roles in autoimmunity, with TIM-1 acting as a costimulatory molecule and TIM-3 regulating Th1 responses. We investigated the therapeutic potential of anti-TIM-1 (RMT1-10) and anti-TIM-3 (RMT3-23) antibodies in an autoimmune arthritis model. Zymosan A was used to induce arthritis in female SKG mice. The arthritis scores, histology, mRNA expression, cytokine levels, micro-computed tomography, and flow cytometry results were obtained. The application of RMT1-10 reduced the arthritis scores, histological damage, and CD4+ T-cell infiltrations, and it suppressed interleukin (IL)-6 and -17A and reduced TIM-3 mRNA expressions. RMT3-23 also lowered arthritis severity, improved histology, and reduced serum levels of tumor necrosis factor (TNF)-α and IL-17A. RMT3-23 inhibited intracellular TNF-α and IL-6 and early apoptosis. An amelioration of autoimmune arthritis was achieved by blocking the TIM-1 and -3 signaling pathways via RMT1-10 and RMT3-23 administration, leading to a widespread decrease in inflammatory cytokines. Both antibodies exhibited therapeutic effects, suggesting TIM-1 and -3 as potential targets for rheumatoid arthritis.
Keywords: TIM-1; TIM-3; autoimmune arthritis; cytokine.
© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.