Herein, an in situ "synchro-subtractive-additive" technique of femtosecond laser single-cell surgery (FLSS) is presented to address the inadequacies of existing surgical methods for single-cell manipulation. This process is enabled by synchronized nanoscale three-dimensional (3D) subtractive and additive manufacturing with ultrahigh precision on various parts of the cells, in that the precise removal and modification of a single-cell structure are realized by nonthermal ablation, with synchronously ultrafast solidification of the specially designed hydrogel by two photopolymerizations. FLSS is a minimally invasive technique with a post-operative survival rate of 70% and stable proliferation. It opens avenues for bottom-up synthetic biology, offering new methods for artificially synthesizing organelle-like 3D structures and modifying the physiological activities of cells.
Keywords: direct writing; femtosecond laser; laser; nanoscale surgery; single-cell.