Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics

Nat Commun. 2024 Jul 16;15(1):5978. doi: 10.1038/s41467-024-50371-4.

Abstract

In thermoelectric, phase interface engineering proves effective in reducing the lattice thermal conductivity via interface scattering and amplifying the density-of-states effective mass by energy filtering. However, the indiscriminate introduction of phase interfaces inevitably leads to diminished carrier mobility. Moreover, relying on a singular energy barrier is insufficient for comprehensive filtration of low-energy carriers throughout the entire temperature range. Addressing these challenges, we advocate the establishment of a composite phase interface using atomic layer deposition (ALD) technology. This design aims to effectively decouple the interrelated thermoelectric parameters in ZrNiSn. The engineered coherent dual-interface energy barriers substantially enhance the density-of-states effective mass across the entire temperature spectrum while preser carrier mobility. Simultaneously, the strong interface scattering on phonons is crucial for curtailing lattice thermal conductivity. Consequently, a 40-cycles TiO2 coating on ZrNi1.03Sn0.99Sb0.01 achieves an unprecedented zT value of 1.3 at 873 K. These findings deepen the understanding of coherent composite-phase interface engineering.