Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer
- PMID: 39018396
- PMCID: PMC466953
- DOI: 10.1126/sciadv.ado1218
Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Figures
Similar articles
-
Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia.Nat Commun. 2020 Jul 14;11(1):3506. doi: 10.1038/s41467-020-17206-4. Nat Commun. 2020. PMID: 32665538 Free PMC article.
-
Regulatory evolution of innate immunity through co-option of endogenous retroviruses.Science. 2016 Mar 4;351(6277):1083-7. doi: 10.1126/science.aad5497. Science. 2016. PMID: 26941318 Free PMC article.
-
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells.Clin Epigenetics. 2019 Jun 19;11(1):92. doi: 10.1186/s13148-019-0690-5. Clin Epigenetics. 2019. PMID: 31217031 Free PMC article.
-
Endogenous retroviruses in the origins and treatment of cancer.Genome Biol. 2021 May 10;22(1):147. doi: 10.1186/s13059-021-02357-4. Genome Biol. 2021. PMID: 33971937 Free PMC article. Review.
-
Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans.Int J Mol Sci. 2024 Sep 29;25(19):10481. doi: 10.3390/ijms251910481. Int J Mol Sci. 2024. PMID: 39408810 Free PMC article. Review.
Cited by
-
An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140.Hum Mol Genet. 2024 Aug 6;33(16):1454-1464. doi: 10.1093/hmg/ddae084. Hum Mol Genet. 2024. PMID: 38751339
-
Transposable elements may enhance antiviral resistance in HIV-1 elite controllers.bioRxiv [Preprint]. 2023 Dec 12:2023.12.11.571123. doi: 10.1101/2023.12.11.571123. bioRxiv. 2023. PMID: 38168352 Free PMC article. Preprint.
-
Regulation of human trophoblast gene expression by endogenous retroviruses.Nat Struct Mol Biol. 2023 Apr;30(4):527-538. doi: 10.1038/s41594-023-00960-6. Epub 2023 Apr 3. Nat Struct Mol Biol. 2023. PMID: 37012406 Free PMC article.
References
-
- Rheinbay E., Nielsen M. M., Abascal F., Wala J. A., Shapira O., Tiao G., Hornshøj H., Hess J. M., Juul R. I., Lin Z., Feuerbach L., Sabarinathan R., Madsen T., Kim J., Mularoni L., Shuai S., Lanzós A., Herrmann C., Maruvka Y. E., Shen C., Amin S. B., Bandopadhayay P., Bertl J., Boroevich K. A., Busanovich J., Carlevaro-Fita J., Chakravarty D., Chan C. W. Y., Craft D., Dhingra P., Diamanti K., Fonseca N. A., Gonzalez-Perez A., Guo Q., Hamilton M. P., Haradhvala N. J., Hong C., Isaev K., Johnson T. A., Juul M., Kahles A., Kahraman A., Kim Y., Komorowski J., Kumar K., Kumar S., Lee D., Lehmann K.-V., Li Y., Liu E. M., Lochovsky L., Park K., Pich O., Roberts N. D., Saksena G., Schumacher S. E., Sidiropoulos N., Sieverling L., Sinnott-Armstrong N., Stewart C., Tamborero D., Tubio J. M. C., Umer H. M., Uusküla-Reimand L., Wadelius C., Wadi L., Yao X., Zhang C.-Z., Zhang J., Haber J. E., Hobolth A., Imielinski M., Kellis M., Lawrence M. S., von Mering C., Nakagawa H., Raphael B. J., Rubin M. A., Sander C., Stein L. D., Stuart J. M., Tsunoda T., Wheeler D. A., Johnson R., Reimand J., Gerstein M., Khurana E., Campbell P. J., López-Bigas N.; PCAWG Drivers and Functional Interpretation Working Group; PCAWG Structural Variation Working Group, Weischenfeldt J., Beroukhim R., Martincorena I., Pedersen J. S., Getz G.; PCAWG Consortium , Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020). - PubMed
-
- Cohen A. J., Saiakhova A., Corradin O., Luppino J. M., Lovrenert K., Bartels C. F., Morrow J. J., Mack S. C., Dhillon G., Beard L., Myeroff L., Kalady M. F., Willis J., Bradner J. E., Keri R. A., Berger N. A., Pruett-Miller S. M., Markowitz S. D., Scacheri P. C., Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat. Commun. 8, 14400 (2017). - PMC - PubMed
-
- Chapuy B., McKeown M. R., Lin C. Y., Monti S., Roemer M. G. M., Qi J., Rahl P. B., Sun H. H., Yeda K. T., Doench J. G., Reichert E., Kung A. L., Rodig S. J., Young R. A., Shipp M. A., Bradner J. E., Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013). - PMC - PubMed
-
- Roe J.-S., Hwang C.-I., Somerville T. D. D., Milazzo J. P., Lee E. J., Da Silva B., Maiorino L., Tiriac H., Young C. M., Miyabayashi K., Filippini D., Creighton B., Burkhart R. A., Buscaglia J. M., Kim E. J., Grem J. L., Lazenby A. J., Grunkemeyer J. A., Hollingsworth M. A., Grandgenett P. M., Egeblad M., Park Y., Tuveson D. A., Vakoc C. R., Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875–888.e20 (2017). - PMC - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
