Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;109(6-2):065102.
doi: 10.1103/PhysRevE.109.065102.

From cavitation to astrophysics: Explicit solution of the spherical collapse equation

Affiliations

From cavitation to astrophysics: Explicit solution of the spherical collapse equation

Danail Obreschkow. Phys Rev E. 2024 Jun.

Abstract

Differential equations of the form R[over ̈]=-kR^{γ}, with a positive constant k and real parameter γ, are fundamental in describing phenomena such as the spherical gravitational collapse (γ=-2), the implosion of cavitation bubbles (γ=-4), and the orbital decay in binary black holes (γ=-7). While explicit elemental solutions exist for select integer values of γ, more comprehensive solutions encompassing larger subsets of γ have been independently developed in hydrostatics (see Lane-Emden equation) and hydrodynamics (see Rayleigh-Plesset equation). I here present a universal explicit solution for all real γ, invoking the beta distribution. Although standard numerical ordinary differential equation solvers can readily evaluate more general second-order differential equations, this explicit solution reveals a hidden connection between collapse motions and probability theory that enables further analytical manipulations, it conceptually unifies distinct fields, and it offers insights into symmetry properties, thereby enhancing our understanding of these pervasive differential equations.

PubMed Disclaimer

Similar articles