Detecting univariate, bivariate, and overall effects of drug mixtures using Bayesian kernel machine regression

Am J Drug Alcohol Abuse. 2024 Sep 2;50(5):623-630. doi: 10.1080/00952990.2024.2380463. Epub 2024 Jul 23.

Abstract

Background: Innovative analytic approaches to drug studies are needed to understand better the co-use of opioids with non-opioids among people using illicit drugs. One approach is the Bayesian kernel machine regression (BKMR), widely applied in environmental epidemiology to study exposure mixtures but has received far less attention in substance use research.Objective: To describe the utility of the BKMR approach to study the effects of drug substance mixtures on health outcomes.Methods: We simulated data for 200 individuals. Using the Vale and Maurelli method, we simulated multivariate non-normal drug exposure data: xylazine (mean = 300 ng/mL, SD = 100 ng/mL), fentanyl (mean = 200 ng/mL, SD = 71 ng/mL), benzodiazepine (mean = 300 ng/mL, SD = 55 ng/mL), and nitazene (mean = 200 ng/mL, SD = 141 ng/mL) concentrations. We performed 10,000 MCMC sampling iterations with three Markov chains. Model diagnostics included trace plots, r-hat values, and effective sample sizes. We also provided visual relationships of the univariate and bivariate exposure-response and the overall mixture effect.Results: Higher levels of fentanyl and nitazene concentrations were associated with higher levels of the simulated health outcome, controlling for age. Trace plots, r-hat values, and effective sample size statistics demonstrated BKMR stability across multiple Markov chains.Conclusions: Our understanding of drug mixtures tends to be limited to studies of single-drug models. BKMR offers an innovative way to discern which substances pose a greater health risk than other substances and can be applied to assess univariate, bivariate, and cumulative drug effects on health outcomes.

Antecedentes:: Se necesitan enfoques analíticos innovadores para estudios de medicamentos que permitan comprender mejor el consumo simultáneo de opioides y no opioides entre personas que usan drogas ilícitas. Un enfoque es la regresión bayesiana de máquina kernel (BKMR), ampliamente utilizada en epidemiología ambiental para estudiar mezclas de exposiciones, pero que ha recibido mucha menos atención en la investigación sobre el uso de sustancias.

Objetivo:: Describir la utilidad del enfoque BKMR para estudiar los efectos de las mezclas de sustancias en los resultados de salud.

Métodos:: Simulamos datos para 200 individuos. Utilizando el método de Vale y Maurelli, simulamos datos de exposición a drogas multivariadas no normales: concentraciones de xilazina (media = 300 ng/mL, SD = 100 ng/mL), fentanilo (media = 200 ng/mL, SD = 71 ng/mL), benzodiazepina (media = 300 ng/mL, SD = 55 ng/mL) y nitazeno (media = 200 ng/mL, SD = 141 ng/mL). Realizamos 10,000 iteraciones de muestreo MCMC con tres cadenas de Markov. Los diagnósticos del modelo incluyeron gráficos de trazado, valores r-hat y tamaños efectivos de muestra. También proporcionamos relaciones visuales del efecto exposición-respuesta univariada y bivariada y del efecto global de la mezcla.

Resultados:: Niveles más altos de concentraciones de fentanilo y nitazeno se asociaron con niveles más altos del resultado de salud simulado, controlando la edad. Los gráficos de trazado, los valores r-hat y las estadísticas del tamaño efectivo de muestra demostraron la estabilidad de BKMR en múltiples cadenas de Markov.

Conclusiones:: Nuestra comprensión de las mezclas de medicamentos tiende a limitarse a estudios de modelos de un solo medicamento. BKMR ofrece una manera innovadora de discernir qué sustancias representan un mayor riesgo para la salud que otras y se puede aplicar para evaluar los efectos univariados, bivariados y acumulativos de los medicamentos en los resultados de salud.

Keywords: Polydrug; cocaine; drug use patterns; harm reduction; naloxone; opioid use disorder.

MeSH terms

  • Analgesics, Opioid
  • Bayes Theorem*
  • Computer Simulation
  • Fentanyl
  • Humans
  • Illicit Drugs
  • Substance-Related Disorders / epidemiology

Substances

  • Illicit Drugs
  • Fentanyl
  • Analgesics, Opioid