Adiponectin suppresses stiffness-dependent, profibrotic activation of lung fibroblasts

Am J Physiol Lung Cell Mol Physiol. 2024 Oct 1;327(4):L487-L502. doi: 10.1152/ajplung.00037.2024. Epub 2024 Aug 6.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next-generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses profibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.NEW & NOTEWORTHY A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We found that activation of the adipocytokine signaling pathway halts and reverses stiffness-induced, profibrotic fibroblast activation. Specific targeting of this signaling cascade may therefore provide therapeutic benefits in IPF.

Keywords: T-cadherin; adiponectin; idiopathic pulmonary fibrosis; mechano-signaling; p38 MAPK.

MeSH terms

  • Adiponectin* / metabolism
  • Cadherins / metabolism
  • Cells, Cultured
  • Extracellular Matrix / metabolism
  • Fibroblasts* / metabolism
  • Fibroblasts* / pathology
  • Humans
  • Idiopathic Pulmonary Fibrosis* / metabolism
  • Idiopathic Pulmonary Fibrosis* / pathology
  • Lung* / metabolism
  • Lung* / pathology
  • Signal Transduction
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Adiponectin
  • Cadherins
  • p38 Mitogen-Activated Protein Kinases