Various antibiotic-resistant bacteria (ARB) are known to induce repeated pulmonary infections and increase morbidity and mortality. A thorough knowledge of antibiotic resistance is imperative for clinical practice to treat resistant pulmonary infections. In this study, we used a reads-based method and an assembly-based method according to the metagenomic next-generation sequencing (mNGS) data to reveal the spectra of ARB and corresponding antibiotic resistance genes (ARGs) in samples from patients with pulmonary infections. A total of 151 clinical samples from 144 patients with pulmonary infections were collected for retrospective analysis. The ARB and ARGs detection performance was compared by the reads-based method and assembly-based method with the culture method and antibiotic susceptibility testing (AST), respectively. In addition, ARGs and the attribution relationship of common ARB were analyzed by the two methods. The comparison results showed that the assembly-based method could assist in determining pathogens detected by the reads-based method as true ARB and improve the predictive capabilities (46% > 13%). ARG-ARB network analysis revealed that assembly-based method could promote determining clear ARG-bacteria attribution and 101 ARGs were detected both in two methods. 25 ARB were obtained by both methods, of which the most predominant ARB and its ARGs in the samples of pulmonary infections were Acinetobacter baumannii (ade), Pseudomonas aeruginosa (mex), Klebsiella pneumoniae (emr), and Stenotrophomonas maltophilia (sme). Collectively, our findings demonstrated that the assembly-based method could be a supplement to the reads-based method and uncovered pulmonary infection-associated ARB and ARGs as potential antibiotic treatment targets.
Keywords: Pulmonary infections; antibiotic resistance genes; antibiotic-resistant bacteria; metagenomic next-generation sequencing; reads-based and assemblybased method.