Fruit-In-Sight: A deep learning-based framework for secondary metabolite class prediction using fruit and leaf images

PLoS One. 2024 Aug 8;19(8):e0308708. doi: 10.1371/journal.pone.0308708. eCollection 2024.

Abstract

Fruits produce a wide variety of secondary metabolites of great economic value. Analytical measurement of the metabolites is tedious, time-consuming, and expensive. Additionally, metabolite concentrations vary greatly from tree to tree, making it difficult to choose trees for fruit collection. The current study tested whether deep learning-based models can be developed using fruit and leaf images alone to predict a metabolite's concentration class (high or low). We collected fruits and leaves (n = 1045) from neem trees grown in the wild across 0.6 million sq km, imaged them, and measured concentration of five metabolites (azadirachtin, deacetyl-salannin, salannin, nimbin and nimbolide) using high-performance liquid chromatography. We used the data to train deep learning models for metabolite class prediction. The best model out of the seven tested (YOLOv5, GoogLeNet, InceptionNet, EfficientNet_B0, Resnext_50, Resnet18, and SqueezeNet) provided a validation F1 score of 0.93 and a test F1 score of 0.88. The sensitivity and specificity of the fruit model alone in the test set were 83.52 ± 6.19 and 82.35 ± 5.96, and 79.40 ± 8.50 and 85.64 ± 6.21, for the low and the high classes, respectively. The sensitivity was further boosted to 92.67± 5.25 for the low class and 88.11 ± 9.17 for the high class, and the specificity to 100% for both classes, using a multi-analyte framework. We incorporated the multi-analyte model in an Android mobile App Fruit-In-Sight that uses fruit and leaf images to decide whether to 'pick' or 'not pick' the fruits from a specific tree based on the metabolite concentration class. Our study provides evidence that images of fruits and leaves alone can predict the concentration class of a secondary metabolite without using expensive laboratory equipment and cumbersome analytical procedures, thus simplifying the process of choosing the right tree for fruit collection.

MeSH terms

  • Chromatography, High Pressure Liquid / methods
  • Deep Learning*
  • Fruit* / chemistry
  • Fruit* / metabolism
  • Myrtaceae / chemistry
  • Myrtaceae / metabolism
  • Plant Leaves* / metabolism
  • Secondary Metabolism

Grants and funding

Research reported in this manuscript is funded by an extramural grant from the Department of Biotechnology, Government of India to BP (BT/PR36744/BID/7/944/2020). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.