Thermostable direct hemolysin (TDH) is a key virulence factor of Vibrio parahaemolyticus, capable of causing seafood-mediated outbreaks of gastroenteritis, posing a threat to the aquatic environment and global public health. In the present study, we explored a multivalent aptamer-mediated inhibition strategy to mitigate TDH toxicity. Based on the characteristic structure of TDH, a stable multivalent aptamer, Ap3-5, was rationally designed by truncation, key fragment evolution, and end fixation. Ap3-5 exhibited strong affinity (Kd=39.24 nM), and thermal (Tm=57.6 °C) and enzymatic stability. In silico studies also revealed that Ap3-5 occupied more active sites of TDH and covered its central pore, indicating its potential as a blocking agent for inhibiting TDH toxicity. In the hemolysis assay, Ap3-5 significantly suppressed the hemolytic effect of TDH. A cellular study revealed a substantial (∼80 %) reduction in TDH cytotoxicity. Supporting these findings, in vivo trials confirmed the inhibitory action of Ap3-5 on both the acute and intestinal toxicity of TDH. Overall, benefiting from the strong binding affinity, high stability, and multisite occupation of the multivalent aptamer with TDH, Ap3-5 displayed robust potential against TDH toxicity by inhibiting membrane pore formation, providing a new approach for alleviating bacterial infections.
Keywords: Molecular docking; Multivalent aptamer; TDH; Toxicity inhibition.
Copyright © 2024 Elsevier B.V. All rights reserved.