In mammals, skeletal muscles (SkMs) and adipose tissues regulate energy homeostasis and share developmental origins. Notably, the perirenal adipose tissue (PRAT) depot has been reported to display adipocyte heterogeneity: while some originated from Myogenic factor 5 (Myf-5) expressing progenitors, others did not. Our study examines the expression and distribution of Myf-5 using immunohistochemical staining and western blotting of PRAT, gastrocnemius, and trapezius from goat at various developmental stages. Contrary to earlier beliefs, functionally divergent SkM gastrocnemius and trapezius showed similar Myf-5 expressional pattern. SkM abundantly expresses Myf-5 in developing myocytes which gradually becomes limited to the nucleus of myogenic stem cells and is retained only in a few differentiated postnatal fibers. During the same period, PRAT displays a unique brown-to-white transition. PRAT exhibited an elevated expression of Myf-5 during prenatal periods, which declines thereafter and becomes negligible during adulthood where it gets fully enriched white adipocytes. The reduction of Myf-5 during the neonatal period was common to all three tissues. However, Myf-5 expression was retained in some of the differentiated myofibers while it was undetectable in adult PRAT. These observations suggest a possible developmental interplay between adipose tissue and SkM where Myf-5 might be a major regulator.
Keywords: Adipose tissue; Development; Myf-5; Myogenesis; Skeletal muscle.
Copyright © 2024. Published by Elsevier B.V.