Nuclear poly-glutamine aggregates rupture the nuclear envelope and hinder its repair

J Cell Biol. 2024 Nov 4;223(11):e202307142. doi: 10.1083/jcb.202307142. Epub 2024 Aug 16.

Abstract

Huntington's disease (HD) is caused by a polyglutamine expansion of the huntingtin protein, resulting in the formation of polyglutamine aggregates. The mechanisms of toxicity that result in the complex HD pathology remain only partially understood. Here, we show that nuclear polyglutamine aggregates induce nuclear envelope (NE) blebbing and ruptures that are often repaired incompletely. These ruptures coincide with disruptions of the nuclear lamina and lead to lamina scar formation. Expansion microscopy enabled resolving the ultrastructure of nuclear aggregates and revealed polyglutamine fibrils sticking into the cytosol at rupture sites, suggesting a mechanism for incomplete repair. Furthermore, we found that NE repair factors often accumulated near nuclear aggregates, consistent with stalled repair. These findings implicate nuclear polyQ aggregate-induced loss of NE integrity as a potential contributing factor to Huntington's disease and other polyglutamine diseases.

MeSH terms

  • Animals
  • Cell Nucleus / metabolism
  • Humans
  • Huntingtin Protein / genetics
  • Huntingtin Protein / metabolism
  • Huntington Disease* / genetics
  • Huntington Disease* / metabolism
  • Huntington Disease* / pathology
  • Nuclear Envelope* / metabolism
  • Nuclear Envelope* / ultrastructure
  • Nuclear Lamina / metabolism
  • Nuclear Lamina / ultrastructure
  • Peptides* / genetics
  • Peptides* / metabolism
  • Protein Aggregates

Substances

  • polyglutamine
  • Peptides
  • Huntingtin Protein
  • Protein Aggregates