Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Keywords: Antioxidants; Neurodegeneration; Oxidative stress; Reactive oxygen species; Transthyretin amyloidosis.
Copyright © 2024 Elsevier Ltd. All rights reserved.