Resource supply and intraspecific variation in inducible defense determine predator-prey interactions in an intraguild predation food web

Eur J Protistol. 2024 Aug 20:95:126114. doi: 10.1016/j.ejop.2024.126114. Online ahead of print.

Abstract

This study investigated the dynamics of reciprocal phenotypic plasticity entailing inducible defense and offense in freshwater ciliate communities in response to altered resource supply and the extent of intraspecific trait variation. Communities consisted of Euplotes octocarinatus (intraguild prey) capable of inducible defense to escape predation, Stylonychia mytilus (intraguild predator) capable of inducible offense to expand its prey spectrum, and Cryptomonas sp. (algal resource). The extent of inducible defense was tested in ten different Euplotes strains in response to freeze-killed Stylonychia concentrate, revealing significant differences in their width and length development. In a subsequent 30-day experiment, four strains were incubated in monoculture and mixture with Stylonychia under continuous and pulsed microalgae supply. The polyclonal Euplotes population outperformed the monoclonal populations, except one, which developed the most pronounced inducible defense and retained the highest biovolume. Stylonychia fluctuated in size, but dominated all communities irrespective of clonal composition. Pulsed resource supply promoted biovolume production of both species. However, periods of resource depletion resulted in more Stylonychia resting cysts, allowing Euplotes to resume growth. Our study provides new insights into interactions of induced defense and intraguild predation under variable environmental conditions, emphasizing the relevance of intraspecific trait variation for predator-prey interactions and community dynamics.

Keywords: Freshwater ciliates; Inducible defense; Inducible offense; Intraguild predation; Intraspecific trait variation; Phenotypic plasticity.