Background: Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is a widely utilized technique in spine surgery. This study compares the efficacy and safety of MIS-TLIF performed with traditional C-arm fluoroscopy and C-arm-free O-arm navigation. To the best of our knowledge, our study is the first to compare cage positioning between C-arm-free and C-arm techniques for MIS- TLIF.
Methods: A retrospective, comparative analysis was conducted on 43 patients undergoing MIS-TLIF. The group was divided based on the utilization of C-arm fluoroscopy or C-arm-free O-arm navigation. Key parameters analyzed included cage orientation, screw insertion accuracy, operative efficiency, and postoperative recovery. Radiographic measurements were used to assess surgical precision and perioperative complications were documented.
Results: The study encompassed 43 patients, with no significant differences in demographic characteristics between the two groups. Surgical time and blood loss were comparable between C-arm-free and C-arm groups. O-arm navigation significantly reduced pedicle screw misplacement (p=0.024). Cage positioning differed between groups (p=0.0063): O-arm cages were mostly mid-center, while C-arm cages were more anterior-center. Such differences in the cage location did not cause any impact on clinical outcome. No significant differences were observed in postoperative complications (screw loosenings, dural tears, surgical site infections) between groups. The Oswestry Disability Index scores at the final follow-up showed no significant difference between the O-arm and C-arm groups, indicating similar levels of postoperative disability.
Conclusion: Despite the clinically insignificant difference in cage placement between C-arm-free and C-arm dependent, C-arm-free MIS-TLIF significantly improves screw placement accuracy and reduces radiation exposure to operating stuff. This suggests its potential as a valuable tool for safer and more precise spinal fusion surgery.
Keywords: c-arm free; mis-tlif; navigation; o-arm; spine surgery.
Copyright © 2024, Uotani et al.