Do 3-dimensional Spinopelvic Characteristics Normalize After THA? A Prospective, Comparative Study Using Motion Capture Analysis

Clin Orthop Relat Res. 2024 Sep 1;482(9):1642-1655. doi: 10.1097/CORR.0000000000003106. Epub 2024 May 14.

Abstract

Background: Spinopelvic stiffness (primarily in the sagittal plane) has been identified as a factor associated with inferior patient-reported outcomes (PROs) and increased dislocation risk after THA. Incorporating preoperative spinopelvic characteristics into surgical planning has been suggested to determine a patient-specific cup orientation that minimizes dislocation risk. Sagittal plane radiographic analysis of static postures indicates that patients exhibit a degree of normalization in their spinopelvic characteristics after THA. It is not yet known whether normalization is also evident during dynamic movement patterns, nor whether it occurs in the coronal and axial planes as well.

Questions/purposes: (1) Does motion capture analysis of sagittal spinopelvic motion provide evidence of normalization after THA? (2) Do changes in coronal and axial plane motion accompany those in the sagittal plane?

Methods: Between April 2019 and February 2020, 25 patients agreed to undergo motion capture movement analysis before THA for the treatment of hip osteoarthritis (OA). Of those, 20 underwent the same assessment between 8 and 31 months after THA. Five patients were excluded because of revision surgery (n = 1), contralateral hip OA (n = 1), and technical issues with a force plate during post-THA assessment (n = 3), leaving a cohort total of 15 (median age [IQR] 65 years [10]; seven male and eight female patients). A convenience sample of nine asymptomatic volunteers, who were free of hip and spinal pathology, was also assessed (median age 51 years [34]; four male and five female patients). Although the patients in the control group were younger than those in the patient group, this set a high bar for our threshold of spinopelvic normalization, reducing the possibility of false positive results. Three-dimensional motion capture was performed to measure spinal, pelvic, and hip motion while participants completed three tasks: seated bend and reach, seated trunk rotation, and gait on a level surface. ROM during each task was assessed and compared between pre- and post-THA conditions and between patients and controls. Statistical parametric mapping (SPM) was used to assess the timing of differences in motion during gait, and spatiotemporal gait parameters were also measured.

Results: After THA, patients demonstrated improvements in sagittal spinal (median [IQR] 32° [18°] versus 41° [14°]; difference of medians 9°; p = 0.004), pelvis (25° [21°] versus 30° [8°]; difference of medians 5°; p = 0.02), and hip ROM (21° [18°] versus 27° [10°]; difference of medians 6°; p = 0.02) during seated bend and reach as well in sagittal hip ROM during gait (30° [11°] versus 44° [7°]; difference of medians 14°; p < 0.001) compared with their pre-THA results, and they showed a high degree of normalization overall. These sagittal plane changes were accompanied by post-THA increases in coronal hip ROM (12° [9°] versus 18° [8°]; difference of medians 6°; p = 0.01) during seated trunk rotation, by both coronal (6° [4°] versus 9° [3°]; difference of medians 3°; p = 0.01) and axial (10° [8°] versus 16° [7°]; difference of medians 6°; p = 0.003) spinal ROM, as well as coronal (8° [3°] versus 13° [4°]; difference of medians 5°; p < 0.001) and axial hip ROM (21° [11°] versus 34° [24°]; difference of medians 13°; p = 0.01) during gait compared with before THA. The SPM analysis showed these improvements occurred during the late swing and early stance phases of gait.

Conclusion: When restricted preoperatively, spinopelvic characteristics during daily tasks show normalization after THA, concurring with previous radiographic findings in the sagittal plane. Thus, spinopelvic characteristics change dynamically, and incorporating them into surgical planning would require predictive models on post-THA improvements to be of use.

Level of evidence: Level II, prognostic study.

Publication types

  • Comparative Study

MeSH terms

  • Aged
  • Arthroplasty, Replacement, Hip*
  • Biomechanical Phenomena
  • Female
  • Hip Joint / diagnostic imaging
  • Hip Joint / physiopathology
  • Hip Joint / surgery
  • Humans
  • Imaging, Three-Dimensional
  • Male
  • Middle Aged
  • Motion Capture
  • Osteoarthritis, Hip / diagnostic imaging
  • Osteoarthritis, Hip / physiopathology
  • Osteoarthritis, Hip / surgery
  • Prospective Studies
  • Range of Motion, Articular*
  • Spine / diagnostic imaging
  • Spine / physiopathology
  • Spine / surgery
  • Treatment Outcome