This study focused on the challenges posed by the fluctuating demand for COVID-19 vaccines, considering factors such as side effects, religious objections, and absenteeism, which result in the accumulation of excess vaccines. Recognizing the resulting social, economic, and environmental issues, this study investigated the application of a lateral transshipment policy for the management of the inventory of short-term vaccines, considering related unpredictabilities. A discrete event simulation built on foundational principles derived from a mixed-integer linear programming model was employed to explore the dynamics of mRNA-based vaccine distribution among two hospitals based on lateral transshipment and reordering policies. Through the simulation of various scenarios over periods of 1-30 days, transshipment based on the availability policy is employed to determine the quantity of vaccines to be transshipped, constrained to vial amounts, and the (s, S) inventory system for reordering. The results of this study underscore the efficacy of lateral transshipment, particularly in situations where demand discrepancies exist between hospitals, thereby revealing its superiority over non-transshipment strategies within 7 days.
Keywords: Discrete event simulation; Inventory; Lateral transshipment; Uncertainty; Vaccine.
© 2024. The Author(s).