The emergence of artificial intelligence (AI) in the medical field holds promise in improving medical management, particularly in personalized strategies for the diagnosis and treatment of brain tumors. However, integrating AI into clinical practice has proven to be a challenge. Deep learning (DL) is very convenient for extracting relevant information from large amounts of data that has increased in medical history and imaging records, which shortens diagnosis time, that would otherwise overwhelm manual methods. In addition, DL aids in automated tumor segmentation, classification, and diagnosis. DL models such as the Brain Tumor Classification Model and the Inception-Resnet V2, or hybrid techniques that enhance these functions and combine DL networks with support vector machine and k-nearest neighbors, identify tumor phenotypes and brain metastases, allowing real-time decision-making and enhancing preoperative planning. AI algorithms and DL development facilitate radiological diagnostics such as computed tomography, positron emission tomography scans, and magnetic resonance imaging (MRI) by integrating two-dimensional and three-dimensional MRI using DenseNet and 3D convolutional neural network architectures, which enable precise tumor delineation. DL offers benefits in neuro-interventional procedures, and the shift toward computer-assisted interventions acknowledges the need for more accurate and efficient image analysis methods. Further research is needed to realize the potential impact of DL in improving these outcomes.
Keywords: artificial intelligence; brain tumor; convolutional neural network; deep learning; neurosurgery.
Copyright © 2024, Mandal et al.