Repeated exposure of animals to Ixodes scapularis ticks can result in acquired tick resistance (ATR). The first manifestation of ATR is erythema at the tick bite site, however, the specific peptide targets and mechanisms associated with this early aspect of ATR are not understood. In this study, we immunized guinea pigs with a lipid nanoparticle containing the mRNA encoding 25 amino acids in the carboxyl terminus of Salp14 (Salp14-C mRNA-LNP), an I. scapularis salivary protein. The animals produced high titers of IgG directed at the carboxyl terminus of Salp14. Guinea pigs immunized with Salp14-C mRNA-LNP and then exposed to I. scapularis, developed erythema at the tick bite site. Transcriptomics of the skin of guinea pigs at the I. scapularis bite sites elucidated selected pathways, including histamine activation, that are associated with the development of erythema. The study demonstrates that an mRNA vaccine encoding a small peptide can induce the initial phase of ATR in guinea pigs.
Keywords: Acquired tick resistance; Erythema; Ixodes scapularis; Salp14.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.