With rising environmental concerns, accurate air quality predictions have become paramount as they help in planning preventive measures and policies for potential health hazards and environmental problems caused by poor air quality. Most of the time, air quality data are time series data. However, due to various reasons, we often encounter missing values in datasets collected during data preparation and aggregation steps. The inability to analyze and handle missing data will significantly hinder the data analysis process. To address this issue, this paper offers an extensive review of air quality prediction and missing data imputation techniques for time series, particularly in relation to environmental challenges. In addition, we empirically assess eight imputation methods, including mean, median, kNNI, MICE, SAITS, BRITS, MRNN, and Transformer, to scrutinize their impact on air quality data. The evaluation is conducted using diverse air quality datasets gathered from numerous cities globally. Based on these evaluations, we offer practical recommendations for practitioners dealing with missing data in time series scenarios for environmental data.
Copyright: © 2024 Hua et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.