Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids deoxycholic acid and lithocholic acid from the primary bile acids cholic acid and chenodeoxycholic acid, respectively, as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized in vitro and in vivo to any significant extent. The formation of secondary bile acids is important in maintaining normal gastrointestinal function, in regulating the structure of the gut microbiome, in the etiology of such diseases such as cancers of the GI tract, and in the prevention of Clostridium difficile infection. We therefore wanted to determine the pangenome of 34 cultured strains of C. scindens and a set of 200 metagenome-assembled genomes (MAGs) to understand the variability among strains. The results indicate that the 34 strains of C. scindens have an open pangenome with 12,720 orthologous gene groups, and a core genome with 1,630 gene families, in addition to 7,051 and 4,039 gene families in the accessory and unique (i.e., strain-exclusive) genomes, respectively. The core genome contains 39% of the proteins with predicted metabolic function, and, in the unique genome, the function of storage and processing of information prevails, with 34% of the proteins being in that category. The pangenome profile including the MAGs also proved to be open. The presence of bile acid inducible ( bai ) and steroid-17,20-desmolase ( des ) genes was identified among groups of strains. The analysis reveals that C. scindens strains are distributed into two clades, indicating the possible onset of C. scindens separation into two species, confirmed by gene content, phylogenomic, and average nucleotide identity (ANI) analyses. This study provides insight into the structure and function of the C. scindens pangenome, offering a genetic foundation of significance for many aspects of research on the intestinal microbiota and bile acid metabolism.