Biosynthesis of wall teichoic acids in Staphylococcus aureus H, Micrococcus varians and Bacillus subtilis W23. Involvement of lipid intermediates containing the disaccharide N-acetylmannosaminyl N-acetylglucosamine

Eur J Biochem. 1985 Dec 16;153(3):639-45. doi: 10.1111/j.1432-1033.1985.tb09348.x.


The precursors for linkage unit (LU) synthesis in Staphylococcus aureus H were UDP-GlcNAc, UDP-N-acetylmannosamine (ManNAc) and CDP-glycerol and synthesis was stimulated by ATP. Moraprenol-PP-GlcNAc-ManNAc-(glycerol phosphate)1-3 was formed from chemically synthesised moraprenol-PP-GlcNAc, UDP-ManNAc and CDP-glycerol in the presence of Triton X-100. LU intermediates formed under both conditions served as acceptors for ribitol phosphate residues, from CDP-ribitol, which comprise the main chain. The initial transfer of GlcNAc-1-phosphate from UDP-GlcNAc was very sensitive to tunicamycin whereas the subsequent transfer of ManNAc from UDP-ManNAc was not. Poly(GlcNAc-1-phosphate) and LU synthesis in Micrococcus varians, with endogenous lipid acceptor, UDP-GlcNAc and CDP-glycerol, was stimulated by UDP-ManNAc. Synthesis of LU on exogenous moraprenol-PP-GlcNAc, with Triton X-100, was dependent on UDP-ManNAc and CDP-glycerol and the intermediates formed served as substrates for polymer synthesis. Membranes from Bacillus subtilis W23 had much lower levels of LU synthesis, but UDP-ManNAc was again required for optimal synthesis in the presence of UDP-GlcNAc and CDP-glycerol. Conditions for LU synthesis on exogenous moraprenol-PP-GlcNAc were not found in this organism. LU synthesis on endogenous acceptor in the absence of UDP-ManNAc was explained by contamination of membranes with UDP-GlcNAc 2-epimerase. Under appropriate conditions, low levels of this enzyme were sufficient to convert UDP-GlcNAc into a mixture of UDP-Glc-NAc and UDP-ManNAc and account for LU synthesis. The results indicate the formation of prenol-PP-GlcNAc-ManNAc-(glycerol phosphate)1-3 which is involved in the synthesis of wall teichoic acids in S. aureus H, M. varians and B. subtilis W23 and their attachment to peptidoglycan.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / metabolism*
  • Biopolymers
  • Carbohydrate Epimerases / metabolism
  • Carrier Proteins*
  • Disaccharides / metabolism*
  • Lipid Metabolism
  • Micrococcus / metabolism*
  • Staphylococcus aureus / metabolism*
  • Teichoic Acids / biosynthesis*
  • Terpenes / metabolism


  • Biopolymers
  • Carrier Proteins
  • Disaccharides
  • N-acetylmannosaminyl(1-4)N-acetylglucosamine
  • Teichoic Acids
  • Terpenes
  • Carbohydrate Epimerases
  • N-acyl-D-glucosamine 2-epimerase